A shortcut for finding the eigenvectors of a 2×2 matrix.

Introduction

A=[abcd]

If matrix A is a 2×2 matrix and x is a nonzero vector and both are in R2 or C2, then x is an eigenvector of A if Ax is a scalar multiple of x and expressed as

Ax=λx
where λ is a scalar known as the eigenvalue associated with x.

Eigenvalues of A are

λ1=a+d+(ad)2+4bc2
and
λ2=a+d(ad)2+4bc2.

For matrix A, we present two sets of general eigenvector formulas as well as a pair of special case formulas. The pair of eigenvector formulas associated with λ1 are

x1=(ad+(ad)2+4bc2c)
and
x1=(2bda+(da)2+4bc).

The pair of eigenvector formulas associated with λ2 are

x2=(ad(ad)2+4bc2c)
and
x2=(2bda(da)2+4bc).

When b or c is 0, the pair of special case formulas are

xλ=a=(adc) and xλ=d=(bda).

Eigenvalues

The characteristic equation for eigenvalues of A is det(AλI)=0 and written out is

|aλbcdλ|=0

and the equation is λ2(a+d)λ+(adbc)=0. The characteristic polynomial p(λ) is λ2(a+d)λ+(adbc).

Eigenvalues of A are determined by solving the characteristic equation and they are

λ1=a+d+(ad)2+4bc2
and
λ2=a+d(ad)2+4bc2.
The original discriminant is (a+d)24(adbc).

Lemma

If b=0 or c=0, then λ={a,d}.

Proof

When b=0 or c=0 the characteristic polynomial is λ2(a+d)λ+ad with roots λ={a,d}.

Eigenvector formulas

General formulas for λ1

Theorem

λ1 is an eigenvalue of A associated with eigenvectors

x1=(2bda+(da)2+4bc)
and
x1=(ad+(ad)2+4bc2c).

Proof

Let x=(x1,x2) and x is in R2 or C2 and

D=(ad)2+4bc=(da)2+4bc=a22ad+d2+4bc.

The equation for determining eigenvectors corresponding to the eigenvalue λ1 is (Aλ1I)x=0.

(1)(Aλ1I)x=(12(adD)x1+bx2cx1+12(daD)x2)=0.


Solving the first component in (1), 12(adD)x1+bx2=0, we have

x1=2bda+Dx2
and the eigenvector is
x1=(2bda+D).
Next, we compute the dot product of the eigenvector x1 and A.

[abcd](2bda+D)=(b(a+d+D)2bc+d(da+D)).

To verify Ax1=λ1x1, we compute the scalar product of λ1 and the eigenvector x1.

a+d+D2(2bda+D)=(b(a+d+D)12(a+d+D)(da+D))=(b(a+d+D)12(2d2+2dD2ad+4bc))=(b(a+d+D)2bc+d(da+D)).


Solving the second component in (1), cx1+12(daD)x2=0, we find

x1=ad+D2cx2

and the eigenvector is

x1=(ad+D2c).

Next, we compute the dot product of the eigenvector x1 and A.

[abcd](ad+D2c)=(a(ad+D)+2bcc(a+d+D)).

To verify Ax1=λ1x1, we compute the scalar product of λ1 and the eigenvector x1.

a+d+D2(ad+D2c)=(12(a+d+D)(ad+D)c(a+d+D))=(12(2a2+2aD2ad+4bc)c(a+d+D))=(a(ad+D)+2bcc(a+d+D)).

General formulas for λ2

Theorem

λ2 is an eigenvalue of A associated with x2 which are given by

x2=(2bda(da)2+4bc)
and
x2=(ad(ad)2+4bc2c).

Proof

Let x=(x1,x2) and x in R2 or C2 and

D=(ad)2+4bc=(da)2+4bc=a22ad+d2+4bc.

The equation for determining eigenvectors corresponding to the eigenvalue λ2 is (Aλ2I)x=0.

(2)(Aλ2I)x=(12(ad+D)x1+bx2cx1+12(da+D)x2)=0.


Solving the first component in (2), 12(ad+D)x1+bx2=0, we find

x1=2bdaDx2

and the eigenvector is

x2=(2bdaD).

Next, we compute the dot product of the eigenvector x2 and A.

[abcd](2bdaD)=(b(a+dD)2bc+d(daD)).

To verify Ax2=λ2x2, we compute the scalar product of λ2 and the eigenvector x2.

(a+dD2)(2bdaD)=(b(a+dD)12(a+dD)(daD))=(b(a+dD)12(2d22dD2ad+4bc))=(b(a+dD)2bc+d(daD)).


Solving the second component in (2), cx1+12(da+D)x2=0, we find

x1=adD2cx2

and the eigenvector is

x2=(adD2c).

Next, we compute the dot product of the eigenvector x2 and A.

[abcd](adD2c)=(a(adD)+2bcc(a+dD)).

To verify Ax2=λ2x2, we compute the scalar product of λ2 and the eigenvector x2.

(a+dD2)(adD2c)=(12(a+dD)(adD)c(a+dD))=(12(2a22ad2aD+4bc)c(a+dD))=(a(adD)+2bcc(a+dD)).

Special case formulas

A set of special case eigenvector formulas exist when b or c is 0.

Theorem

When b=0 then λ=a belongs to the eigenvector xλ=a=(adc).

Proof

When b=0 and λ=a, the equation to solve for the eigenvector is (AaI)x=0 and written out is

(0cx1+(da)x2)=0.

Solving the second component we find

x1=adcx2

and the eigenvector is

xλ=a=(adc).

We confirm xλ=a is an eigenvector by showing Ax=λx and we have

[a0cd](adc)=(a(ad)ac)=a(adc).

Theorem

If c=0 then λ=d belongs to the eigenvector xλ=d=(bda).

Proof

When c=0 and λ=d

(AdI)x=((ad)x1+bx20)=0

Solving the first component we find (da)x1=bx2 and the eigenvector is

xλ=d=(bda).

We confirm xλ=d is an eigenvector by showing Ax=λx and we have

[ab0d](bda)=(bdd(da))=d(bda).

Examples

Example 1

Let A=[1345]. The characteristic polynomial of A is p(λ)=λ26λ7 and the eigenvalues are λ1=7,λ2=1. The eigenvectors of A are

x1=((ad)+(ad)2+4bc2c)=((15)+16+4(3)(4)2(4))=4(12)x1=(2b(da)+(da)2+4bc)=(2(3)(51)+16+4(3)(4))=6(12)x2=((ad)(ad)2+4bc2c)=((15)16+4(3)(4)2(4))=4(32)x2=(2b(da)(da)2+4bc)=(2(3)(51)16+4(3)(4))=2(32)
Wolfram|Alpha

Example 2

Let A=[1ii1]. The characteristic polynomial of A is p(λ)=λ22 and the eigenvalues are λ1=2,λ2=2. The eigenvectors of A are

x1=((ad)+(ad)2+4bc2c)=((1(1))+(1(1))2+4(i)(i)2(i))=2((1+2)i1)x1=(2b(da)+(da)2+4bc)=(2(i)(11)+(11)2+4(i)(i))=2((1+2)i1)x2=((ad)(ad)2+4bc2c)=((1(1))(1(1))2+4(i)(i)2(i))=2((12)i1)x2=(2b(da)(da)2+4bc)=(2(i)(11)(11)2+4(i)(i))=2((12)i1)
Wolfram|Alpha

Example 3

Let A=[1305]. The characteristic polynomial of A is p(λ)=λ26λ+5 and the eigenvalues are λ1=5,λ2=1. The eigenvectors of A are

x1=((ad)+(ad)2+4bc2c)=((15)+(15)2+4(3)(0)2(0))=(00)xλ=d=(bda)=(34)x1=(2b(da)+(da)2+4bc)=(2(3)(51)+16)=2(34)x2=((ad)(ad)2+4bc2c)=((15)(15)2+4(3)(0)2(0))=8(10)x2=(2b(da)(da)2+4bc)=(2(3)(51)16)=6(10)
Wolfram|Alpha

Example 4

Let A=[1043]. The characteristic polynomial of A is p(λ)=λ24λ+3 and the eigenvalues are λ1=3,λ2=1. The eigenvectors of A are

x1=((ad)+(ad)2+4bc2c)=((13)+(13)22(4))=8(01)x1=(2b(da)+(da)2+4bc)=(2(0)(31)+(31)2)=4(01)x2=((ad)(ad)2+4bc2c)=((13)(13)22(4))=4(12)x2=(2b(da)(da)2+4bc)=(2(0)(31)(31)2)=(00)xλ=a=(adc)=2(12)
Wolfram|Alpha

Example 5

Let A=(104i). The characteristic polynomial of A is p(λ)=λ2(1+i)λ+i and the eigenvalues are λ1=1,λ2=i. The eigenvectors of A are

x1=((ad)+(ad)2+4bc2c)=((1i)+(1i)2+4(0)(4)2(4))=(1i+1i8)=2(1i4)x1=(2b(da)+(da)2+4bc)=(2(0)(i1)+(i1)2+4(0)(4))=(0i1+1i)=(00)xλ=a=(adc)=(1i4)x2=((ad)(ad)2+4bc2c)=((1i)(1i)2+4(0)(4)2(4))=(1i1+i8)=8(01)x2=(2b(da)(da)2+4bc)=(2(0)(i1)(i1)2+4(0)(4))=(0i11+i)=2(i1)(01)(i1)2=2i=1i
WolframAlpha

Example 6

Let A=(0110). The characteristic polynomial of A is p(λ)=λ2+1 and the eigenvalues are λ1=i,λ2=i. The eigenvectors are A are

x1=((ad)+(ad)2+4bc2c)=((00)+(00)2+4(1)(1)2(1))=2(i1)x1=(2b(da)+(da)2+4bc)=(2(1)(00)+(00)+4(1)(1))=2i(i1)x2=((ad)(ad)2+4bc2c)=((00)(00)2+4(1)(1)2(1))=2(i1)x2=(2b(da)(da)2+4bc)=(2(1)(00)(00)+4(1)(1))=2i(i1)
Wolfram|Alpha

Example 7

Let A=(4522). The characteristic polynomial of A is p(λ)=λ22λ+2 and the eigenvalues are λ1=1+i,λ2=1i. The eigenvectors are A are

x1=((ad)+(ad)2+4bc2c)=((4(2))+(4(2))2+4(5)(2)2(2))=2(3+i2)x1=(2b(da)+(da)2+4bc)=(2(5)(24)+(24)2+4(5)(2))=10(3+i2)x2=((ad)(ad)2+4bc2c)=((4(2))(4(2))2+4(5)(2)2(2))=2(3i2)x2=(2b(da)(da)2+4bc)=(2(5)(24)(24)2+4(5)(2))=10(3i2)
Wolfram|Alpha

Eigenvector tool

Eigenvector Tool

The eigenvector tool only utilizes the previously defined formulas to calculate eigenvectors. Additionally a link to WolframAlpha that solves the same matrix is provided to confirm the results.